Mark scheme – Electron Structure

Question		on	Answer/Indicative content	Marks	Guidance
1			Sub-shells labels 2s (single box) AND 2p (3 boxes) √ Electrons as arrows unpaired electrons in 3 boxes: ↑↓ ↑ ↑ AND Paired electrons in single box: ↑↓ ↓ √	2 (AO1.1) (AO1.2)	energy 25 25 27 27 27 27 27 27 27 27 27 27 27 27 27
			Total	2	
2		-	(1s ²) 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁴ √ Look carefully at (1s ²) 2s ² 2p ⁶ 3s ² 3p ⁶ – there may be a mistake	1	 ALLOW subscripts ALLOW in any order i.e. 3d¹⁰ after 4s² or after 4p⁴ ALLOW upper case D, etc and subscripts, e.g3S₂3P⁶ DO NOT ALLOW [Ar] as shorthand for 1s²2s²2p⁶3s²3p⁶ Examiner's Comments Most candidates answered this correctly. The most common error seen was 4p⁶ instead of 4p⁴
		ii	Gas B H ₂ Se / Hydrogen selenide / Selenium hydride √ Equation Na ₂ Se + 2HC/ → 2NaC/ + H ₂ Se	2	ALLOW SeH ₂ ALLOW correct multiples

		All formulae and balancing √		IGNORE STATE SYMBOLS DO NOT ALLOW H ₂ S for gas B BUT ALLOW ECF from H ₂ S for equation: Na ₂ S +2HCI \rightarrow 2NaCl + H ₂ S Examiner's Comments The majority of candidates obtained 1 or 2 marks on this question. The most common errors seen were identifying the gas as H ₂ S or incorrect balancing.
		Total	3	
3	i	(1s²) 2s² 2p ⁶ ✓	1	IGNORE 1s ² seen twice ALLOW upper case letters AND subscripts Examiner's Comments Many incorrect answers but I am happy to report that the use of incorrect notation, mentioned in last year's report, was not an issue in the 2017 paper.
	ii	Products of reaction $A = Barium hydroxide / Ba(OH)_2$ $B = Ammonia / NH_3$ Formula for barium nitride Ba_3N_2 Balanced equation AND state symbols $Ba_3N_2(s) + 6H_2O(I) \rightarrow 3Ba(OH)_2(aq) + 2NH_3(g)$ State symbols are required	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC ALLOW one mark for correct products incorrectly labelled Formulae must be correct No ECF from any incorrect formula ALLOW multiples Correct equation with state symbols scores 4 marks Examiner's Comment: This question discriminated well and only the most able candidates were able to score full marks with a correctly balanced equation including state symbols. Weaker candidates were able to pick up some marks for identifying barium hydroxide or ammonia, although barium oxide and nitrogen were not uncommon. Some failed to score the more accessible marks because they used an incorrect formula instead of writing the name of the product.

		Total	5	
4		1s² 2s² 2p ⁶ 3s² 3p ⁶ 3d ¹⁰ 4s² √	1	ALLOW 4s ² 3d ¹⁰ Examiner's Comments The electron configuration of the d-block element zinc was extremely well known – once again suggesting that the knowledge gained from studying transition elements at A2 was of considerable benefit.
		Total	1	
5	i	s-orbital = spherical AND p-orbital = dumb-bell shape √	1	For s-orbital IGNORE 'circular' For p-orbital ALLOW other words indicating 3-D shape of p-orbital eg 'Peanut-shaped' OR hour glass etc ALLOW 'figure of eight' OR 'figure of 8 ' IGNORE diagrams Examiner's Comments Spherical was almost universally known as the shape of the s-orbital and this was mirrored in the responses for the shape of the p-orbital
	ii	p-orbitals have greater energy than s-orbitals √ (three) p-orbitals have equal energy √	2	ALLOW reverse argument ALLOW suitable energy diagram for either part Examiner's Comments This question asked about the simple concept of relative energies of the 2s orbital and the 2p orbitals. However, many candidates decided that the irrelevant details of the numbers of electrons should be given in their answer and further compounded their confusion by relating this fact to the relative energies of these orbitals. This said, the better candidates were

				able to give concise, accurate responses for two marks.
		Total	3	
6	i	1s²2s²2p ⁶ 3s² √	1	ALLOW upper case S and P, and subscripts, e.g2S ₂ 3P ₆ Examiner's Comments This part was generally answered well showing a good understanding of electron configuration. Candidates frequently used subscripts rather than superscripts for denoting the number of electrons in a particular sub-shell and although this was still credited the correct use of notation should be emphasised in lessons.
	ii	(Mg) loses / transfers / donates two electrons √	1	ALLOW Mg loses the 3s electrons provided electronic configuration in (i) is 3_s^2 ALLOW Mg \rightarrow Mg ²⁺ + 2e ⁻ IGNORE reference to oxidation numbers / states Examiner's Comments Most candidates understood that oxidation resulted in the loss of electrons although some answers considered changes in oxidation number. A significant number of candidates did not specify how many electrons were lost when magnesium was oxidised preventing the award of the mark.
		Total	2	
7		1s² 2s² 2p ⁶ 3s² 3p ⁶ 3d ⁵ 4s² √	1	ALLOW 4s ² 3d ⁵ IGNORE 1s ² seen twice Examiner's Comments Answers proved that candidates were familiar with electron configurations.
		Total	1	

8	i	32 √	1	Examiner's Comments Although there is a clear statement in the specification that candidates should know the number of electrons in the first four shells many were uncertain about how many electrons would be found in a complete fourth shell.
	ii	9√	1	Examiner's Comments This question proved to be slightly more demanding than (i). There were a range of answers suggested where it was not possible to see how the student had come to that conclusion but 3 was not an uncommon response presumably arising from a confusion between the number of orbitals and the number of sub-shells or different types of orbital.
		Total	2	
9	i	(1s²) 2s² 2p ⁶ 3s² 3p ⁶ 3d ¹⁰ 4s² 4p ⁶	1	 ALLOW 4s² 3d¹⁰4p⁶ ALLOW subscripts AND 3D IGNORE 1s² seen twice Examiner's Comments Most candidates were awarded the mark available for the electron configuration of the bromide ion, but weaker responses included the electronic configuration of a bromine atom or of the ion, Br⁺.
	ii	Cream AND precipitate √	1	ALLOW solid OR ppt for precipitate IGNORE 'does not dissolve' OR 'partially dissolves' Examiner's Comments Many candidates focused exclusively in their answers on the solubility of silver bromide in aqueous ammonia, writing as a result that the precipitate would remain, or that it would not dissolve and so not

					gaining the mark by omitting the colour of the precipitate.
		iii	Ag⁺(aq) + Br(aq) → AgBr(s)	1	Equation AND state symbols required Examiner's Comments The majority of candidates answered this question successfully with the only recurring error made being to omit some or all of the state symbols.
			Total	3	
10			1s²2s²2p ⁶ 3s²3p ⁶ 3d ¹⁰ 4s²4p ⁵	1	allow4s ² 3d ¹⁰
			Total	1	
11	а		63 p 90 n 60 e	1	
	b		2 (1) 2 (1) 18 (1)	3	
			Total	4	