Mark scheme - Electron Structure

Question		Answer/Indicative content	Marks	Guidance
1		Sub-shells labels 2s (single box) AND 2p (3 boxes) \checkmark Electrons as arrows unpaired electrons in 3 boxes: $\uparrow \downarrow \uparrow \uparrow$ AND Paired electrons in single box: $\uparrow \downarrow$	$\begin{gathered} 2 \\ (\mathrm{AO} 1.1) \end{gathered}$	ALLOW single headed arrows, e.g. 1 Examiner's Comments Most candidates added arrows correctly to the boxes but the sub-shell labels were sometimes omitted. Lower attaining candidates sometimes paired electrons, rather than showing them singly or showed six electrons in the $2 p$ sub-shell. This suggested either a lack of understanding or failure to read the question.
		Total	2	
2	i	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{4} \checkmark$ Look carefully at ($1 s^{2}$) $2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ - there may be a mistake	1	ALLOW subscripts ALLOW in any order i.e. $3 d^{10}$ after $4 s^{2}$ or after $4 p^{4}$ ALLOW upper case D, etc and subscripts, e.g.3S23P6 DO NOT ALLOW [Ar] as shorthand for $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ Examiner's Comments Most candidates answered this correctly. The most common error seen was $4 p^{6}$ instead of $4 p^{4}$
	ii	Gas B $\mathrm{H}_{2} \mathrm{Se} /$ Hydrogen selenide / Selenium hydride \checkmark Equation $\mathrm{Na}_{2} \mathrm{Se}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{Se}$	2	ALLOW SeH2 ALLOW correct multiples

		All formulae and balancing \checkmark		IGNORE STATE SYMBOLS DO NOT ALLOW $\mathrm{H}_{2} \mathrm{~S}$ for gas B BUT ALLOW ECF from $\mathrm{H}_{2} \mathrm{~S}$ for equation: $\mathrm{Na}_{2} \mathrm{~S}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{~S}$ Examiner's Comments The majority of candidates obtained 1 or 2 marks on this question. The most common errors seen were identifying the gas as $\mathrm{H}_{2} \mathrm{~S}$ or incorrect balancing.
		Total	3	
3		$\begin{array}{r} \left(1 s^{2}\right) 2 s^{2} 2 p^{6} \\ \checkmark \end{array}$	1	IGNORE $1 \mathrm{~s}^{2}$ seen twice ALLOW upper case letters AND subscripts Examiner's Comments Many incorrect answers but I am happy to report that the use of incorrect notation, mentioned in last year's report, was not an issue in the 2017 paper.
	-	Products of reaction A = Barium hydroxide / $\mathrm{Ba}(\mathrm{OH})_{2}$ $\mathbf{B}=$ Ammonia $/ \mathrm{NH}_{3}$ Formula for barium nitride $\mathrm{Ba}_{3} \mathrm{~N}_{2}$ Balanced equation AND state symbols $\begin{aligned} & \mathrm{Ba}_{3} \mathrm{~N}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \\ & 3 \mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \\ & +2 \mathrm{NH}_{3}(\mathrm{~g}) \end{aligned}$ State symbols are required	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC ALLOW one mark for correct products incorrectly labelled Formulae must be correct No ECF from any incorrect formula ALLOW multiples Correct equation with state symbols scores 4 marks Examiner's Comment: This question discriminated well and only the most able candidates were able to score full marks with a correctly balanced equation including state symbols. Weaker candidates were able to pick up some marks for identifying barium hydroxide or ammonia, although barium oxide and nitrogen were not uncommon. Some failed to score the more accessible marks because they used an incorrect formula instead of writing the name of the product.

		Total	5	
4		$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} \checkmark$	1	ALLOW 4s $\mathbf{s}^{\mathbf{2}} \mathbf{3} \mathbf{d}^{\mathbf{1 0}}$ Examiner's Comments The electron configuration of the d-block element zinc was extremely well known once again suggesting that the knowledge gained from studying transition elements at A2 was of considerable benefit.
		Total	1	
5		s-orbital = spherical AND p-orbital = dumb-bell shape \checkmark	1	For s-orbital IGNORE 'circular' For p-orbital ALLOW other words indicating 3-D shape of p-orbital eg 'Peanut-shaped' OR hour glass etc ALLOW 'figure of eight' OR 'figure of 8 ' IGNORE diagrams Examiner's Comments Spherical was almost universally known as the shape of the s-orbital and this was mirrored in the responses for the shape of the p-orbital
	ii	p-orbitals have greater energy than s-orbitals \checkmark (three) p-orbitals have equal energy \checkmark	2	ALLOW reverse argument ALLOW suitable energy diagram for either part Examiner's Comments This question asked about the simple concept of relative energies of the 2 s orbital and the 2 p orbitals. However, many candidates decided that the irrelevant details of the numbers of electrons should be given in their answer and further compounded their confusion by relating this fact to the relative energies of these orbitals. This said, the better candidates were

				able to give concise, accurate responses for two marks.
		Total	3	
6	i	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} \checkmark$	1	ALLOW upper case S and P, and subscripts, e.g. $2 \mathrm{~S}_{2} 3 \mathrm{P}_{6}$ Examiner's Comments This part was generally answered well showing a good understanding of electron configuration. Candidates frequently used subscripts rather than superscripts for denoting the number of electrons in a particular sub-shell and although this was still credited the correct use of notation should be emphasised in lessons.
	ii	(Mg) loses / transfers / donates two electrons \checkmark	1	ALLOW Mg loses the 3s electrons provided electronic configuration in (i) is $3 s^{2}$ ALLOW $\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$ IGNORE reference to oxidation numbers / states Examiner's Comments Most candidates understood that oxidation resulted in the loss of electrons although some answers considered changes in oxidation number. A significant number of candidates did not specify how many electrons were lost when magnesium was oxidised preventing the award of the mark.
		Total	2	
7		$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{2} \checkmark$	1	ALLOW 4s ${ }^{2} 3 \mathrm{~d}^{5}$ IGNORE $1 \mathrm{~s}^{2}$ seen twice Examiner's Comments Answers proved that candidates were familiar with electron configurations.
		Total	1	

i				

					gaining the mark by omitting the colour of the precipitate.
		iii	$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Br}(\mathrm{aq}) \rightarrow \mathrm{AgBr}(\mathrm{s}) \checkmark$	1	Equation AND state symbols required Examiner's Comments The majority of candidates answered this question successfully with the only recurring error made being to omit some or all of the state symbols.
			Total	3	
10			$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{5}$	1	allow ... $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} \ldots$
			Total	1	
11	a		63 p 90 n 60 e	1	
	b		$\begin{aligned} & 2(1) \\ & 2(1) \\ & 18(1) \end{aligned}$	3	
			Total	4	

